78 research outputs found

    How Bad is the Freedom to Flood-It?

    Get PDF
    Fixed-Flood-It and Free-Flood-It are combinatorial problems on graphs that generalize a very popular puzzle called Flood-It. Both problems consist of recoloring moves whose goal is to produce a monochromatic ("flooded") graph as quickly as possible. Their difference is that in Free-Flood-It the player has the additional freedom of choosing the vertex to play in each move. In this paper, we investigate how this freedom affects the complexity of the problem. It turns out that the freedom is bad in some sense. We show that some cases trivially solvable for Fixed-Flood-It become intractable for Free-Flood-It. We also show that some tractable cases for Fixed-Flood-It are still tractable for Free-Flood-It but need considerably more involved arguments. We finally present some combinatorial properties connecting or separating the two problems. In particular, we show that the length of an optimal solution for Fixed-Flood-It is always at most twice that of Free-Flood-It, and this is tight

    Space-Efficient Algorithms for Longest Increasing Subsequence

    Get PDF
    Given a sequence of integers, we want to find a longest increasing subsequence of the sequence. It is known that this problem can be solved in O(n log n) time and space. Our goal in this paper is to reduce the space consumption while keeping the time complexity small. For sqrt(n) <= s <= n, we present algorithms that use O(s log n) bits and O(1/s n^2 log n) time for computing the length of a longest increasing subsequence, and O(1/s n^2 log^2 n) time for finding an actual subsequence. We also show that the time complexity of our algorithms is optimal up to polylogarithmic factors in the framework of sequential access algorithms with the prescribed amount of space

    Simple Efficient Algorithm for MPQ-tree of an Interval Graph

    Get PDF
    MPQ-tree is an informative data structure for an interval graph. We propose a simple algorithm that constructs an MPQ-tree for an interval graph G = (V,E) given in the interval representation. If endpoints of the interval representation are already sorted, the algorithm runs in O(|V |) time and space. The complexities are theoretically optimal. Further, our algorithm is much simpler than the previously known algorithms.WAAC 2007/August 9-10, 2007, at Chonnam National University, Gwangju, Kore

    How Bad is the Freedom to Flood-It?

    Get PDF
    International audienceFixed-Flood-It and Free-Flood-It are combinatorial problems on graphs that generalize a very popular puzzle called Flood-It. Both problems consist of recoloring moves whose goal is to produce a monochromatic ("flooded") graph as quickly as possible. Their difference is that in Free-Flood-It the player has the additional freedom of choosing the vertex to play in each move. In this paper, we investigate how this freedom affects the complexity of the problem. It turns out that the freedom is bad in some sense. We show that some cases trivially solvable for Fixed-Flood-It become intractable for Free-Flood-It. We also show that some tractable cases for Fixed-Flood-It are still tractable for Free-Flood-It but need considerably more involved arguments. We finally present some combinatorial properties connecting or separating the two problems. In particular, we show that the length of an optimal solution for Fixed-Flood-It is always at most twice that of Free-Flood-It, and this is tight

    The cytotoxicity of Bacillus thuringiensis subsp. coreanensis A2316 strain against the human leukemic T cell

    Get PDF
    Bacillus thuringiensis subsp. coreanensis A2316 is a newly isolated strain from Yonakunijima Island in Japan. It produces the proteinaceous inclusion body (crystal) which has no insecticidal and hemolytic activities. When the crystal proteins were digested by proteinase K, they exhibited the strong cytotoxicity against human leukemic T cell, MOLT-4. The proteinase K-digested A2316 crystal proteins have little damage upon the cell membrane of MOLT-4, suggesting that the cell death of MOLT-4 was induced through a mechanism other than the colloid-osmotic swelling and cell lysis as caused by hitherto known B. thuringiensis crystal proteins. The 29-kDa polypeptide proved to be an active component of the proteinase K-digested A2316 crystal proteins. EC(50) of the purified 29-kDa polypeptide was 0.0579 μg/ml. The N-terminal amino acid sequence of the 29-kDa polypeptide was identical with that of p29 produced by B. thuringiensis A1519 strain and shared no significant homology with all the known proteins, suggesting that this polypeptide belong to a new family of B. thuringiensis crystal proteins

    フォン・ヴィレブランド因子の機能を調節することで、マウスの急性腎虚血再灌流障害を緩和できる

    Get PDF
    Acute kidney injury (AKI), an abrupt loss of renal function, is often seen in clinical settings and may become fatal. In addition to its hemostatic functions, von Willebrand factor (VWF) is known to play a role in cross-talk between inflammation and thrombosis. We hypothesized that VWF may be involved in the pathophysiology of AKI, major causes of which include insufficient renal circulation or inflammatory cell infiltration in the kidney. To test this hypothesis, we studied the role of VWF in AKI using a mouse model of acute ischemia-reperfusion (I/R) kidney injury. We analyzed renal function and blood flow in VWF-gene deleted (knock-out; KO) mice. The functional regulation of VWF by ADAMTS13 or a function-blocking anti-VWF antibody was also evaluated in this pathological condition. Greater renal blood flow and lower serum creatinine were observed after reperfusion in VWF-KO mice compared with wild-type (WT) mice. Histological analysis also revealed a significantly lower degree of tubular damage and neutrophil infiltration in kidney tissues of VWF-KO mice. Both human recombinant ADAMTS13 and a function-blocking anti-VWF antibody significantly improved renal blood flow, renal function and histological findings in WT mice. Our results indicate that VWF plays a role in the pathogenesis of AKI. Proper functional regulation of VWF may improve the microcirculation and vessel function in the kidney, suggesting a novel therapeutic option against AKI.博士(医学)・甲第744号・令和2年3月16日© The Author(s) 2019. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
    corecore